Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Triple Sequence Learning for Cross-domain Recommendation (2304.05027v2)

Published 11 Apr 2023 in cs.IR

Abstract: Cross-domain recommendation (CDR) aims to leverage the correlation of users' behaviors in both the source and target domains to improve the user preference modeling in the target domain. Conventional CDR methods typically explore the dual-relations between the source and target domains' behaviors. However, this may ignore the informative mixed behaviors that naturally reflect the user's global preference. To address this issue, we present a novel framework, termed triple sequence learning for cross-domain recommendation (Tri-CDR), which jointly models the source, target, and mixed behavior sequences to highlight the global and target preference and precisely model the triple correlation in CDR. Specifically, Tri-CDR independently models the hidden representations for the triple behavior sequences and proposes a triple cross-domain attention (TCA) method to emphasize the informative knowledge related to both user's global and target-domain preference. To comprehensively explore the cross-domain correlations, we design a triple contrastive learning (TCL) strategy that simultaneously considers the coarse-grained similarities and fine-grained distinctions among the triple sequences, ensuring the alignment while preserving information diversity in multi-domain. We conduct extensive experiments and analyses on six cross-domain settings. The significant improvements of Tri-CDR with different sequential encoders verify its effectiveness and universality. The code will be released upon acceptance.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.