Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Two-stage Rule-induction Visual Reasoning on RPMs with an Application to Video Prediction (2111.12301v2)

Published 24 Nov 2021 in cs.CV

Abstract: Raven's Progressive Matrices (RPMs) are frequently used in evaluating human's visual reasoning ability. Researchers have made considerable efforts in developing systems to automatically solve the RPM problem, often through a black-box end-to-end convolutional neural network for both visual recognition and logical reasoning tasks. Based on the two intrinsic natures of RPM problem, visual recognition and logical reasoning, we propose a Two-stage Rule-Induction Visual Reasoner (TRIVR), which consists of a perception module and a reasoning module, to tackle the challenges of real-world visual recognition and subsequent logical reasoning tasks, respectively. For the reasoning module, we further propose a "2+1" formulation that models human's thinking in solving RPMs and significantly reduces the model complexity. It derives a reasoning rule from each RPM sample, which is not feasible for existing methods. As a result, the proposed reasoning module is capable of yielding a set of reasoning rules modeling human in solving the RPM problems. To validate the proposed method on real-world applications, an RPM-like Video Prediction (RVP) dataset is constructed, where visual reasoning is conducted on RPMs constructed using real-world video frames. Experimental results on various RPM-like datasets demonstrate that the proposed TRIVR achieves a significant and consistent performance gain compared with the state-of-the-art models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.