Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices (2201.12382v2)

Published 28 Jan 2022 in cs.AI, cs.CV, and cs.LG

Abstract: Abstract visual reasoning (AVR) domain encompasses problems solving which requires the ability to reason about relations among entities present in a given scene. While humans, generally, solve AVR tasks in a "natural" way, even without prior experience, this type of problems has proven difficult for current machine learning systems. The paper summarises recent progress in applying deep learning methods to solving AVR problems, as a proxy for studying machine intelligence. We focus on the most common type of AVR tasks -- the Raven's Progressive Matrices (RPMs) -- and provide a comprehensive review of the learning methods and deep neural models applied to solve RPMs, as well as, the RPM benchmark sets. Performance analysis of the state-of-the-art approaches to solving RPMs leads to formulation of certain insights and remarks on the current and future trends in this area. We conclude the paper by demonstrating how real-world problems can benefit from the discoveries of RPM studies.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube