Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Limits of Multilayer Diffusion Network Inference in Social Media Research (2111.06235v2)

Published 11 Nov 2021 in cs.SI

Abstract: Information on social media spreads through an underlying diffusion network that connects people of common interests and opinions. This diffusion network often comprises multiple layers, each capturing the spreading dynamics of a certain type of information characterized by, for example, topic, language, or attitude. Researchers have previously proposed methods to infer these underlying multilayer diffusion networks from observed spreading patterns, but little is known about how well these methods perform across the range of realistic spreading data. In this paper, we conduct an extensive series of synthetic data experiments to systematically analyze the performance of the multilayer diffusion network inference framework, under varied network structure (e.g. density, number of layers) and information diffusion settings (e.g. cascade size, layer mixing) that are designed to mimic real-world spreading on social media. Our results show extreme performance variation of the inference framework: notably, it achieves much higher accuracy when inferring a denser diffusion network, while it fails to decompose the diffusion network correctly when most cascades in the data reach a limited audience. In demonstrating the conditions under which the inference accuracy is extremely low, our paper highlights the need to carefully evaluate the applicability of the inference before running it on real data. Practically, our results serve as a reference for this evaluation, and our publicly available implementation, which outperforms previous implementations in accuracy, supports further testing under personalized settings.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube