Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DANI: A Fast Diffusion Aware Network Inference Algorithm (1706.00941v1)

Published 3 Jun 2017 in cs.SI

Abstract: The fast growth of social networks and their privacy requirements in recent years, has lead to increasing difficulty in obtaining complete topology of these networks. However, diffusion information over these networks is available and many algorithms have been proposed to infer the underlying networks by using this information. The previously proposed algorithms only focus on inferring more links and do not pay attention to the important characteristics of the underlying social networks In this paper, we propose a novel algorithm, called DANI, to infer the underlying network structure while preserving its properties by using the diffusion information. Moreover, the running time of the proposed method is considerably lower than the previous methods. We applied the proposed method to both real and synthetic networks. The experimental results showed that DANI has higher accuracy and lower run time compared to well-known network inference methods.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.