Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DR-VNet: Retinal Vessel Segmentation via Dense Residual UNet (2111.04739v2)

Published 8 Nov 2021 in eess.IV and cs.CV

Abstract: Accurate retinal vessel segmentation is an important task for many computer-aided diagnosis systems. Yet, it is still a challenging problem due to the complex vessel structures of an eye. Numerous vessel segmentation methods have been proposed recently, however more research is needed to deal with poor segmentation of thin and tiny vessels. To address this, we propose a new deep learning pipeline combining the efficiency of residual dense net blocks and, residual squeeze and excitation blocks. We validate experimentally our approach on three datasets and show that our pipeline outperforms current state of the art techniques on the sensitivity metric relevant to assess capture of small vessels.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.