Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rethinking the Extraction and Interaction of Multi-Scale Features for Vessel Segmentation (2010.04428v1)

Published 9 Oct 2020 in eess.IV and cs.CV

Abstract: Analyzing the morphological attributes of blood vessels plays a critical role in the computer-aided diagnosis of many cardiovascular and ophthalmologic diseases. Although being extensively studied, segmentation of blood vessels, particularly thin vessels and capillaries, remains challenging mainly due to the lack of an effective interaction between local and global features. In this paper, we propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans, respectively. In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features, and the coarse-to-fine (CF) module replaces the conventional decoder to enhance the details of thin vessels and process hard-to-classify pixels again. We evaluated our PC-Net on the Digital Retinal Images for Vessel Extraction (DRIVE) database and an in-house 3D major artery (3MA) database against several recent methods. Our results not only demonstrate the effectiveness of the proposed PSE module and CF module, but also suggest that our proposed PC-Net sets new state of the art in the segmentation of retinal vessels (AUC: 98.31%) and major arteries (AUC: 98.35%) on both databases, respectively.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.