Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

FedGraph: Federated Graph Learning with Intelligent Sampling (2111.01370v1)

Published 2 Nov 2021 in cs.LG and cs.DC

Abstract: Federated learning has attracted much research attention due to its privacy protection in distributed machine learning. However, existing work of federated learning mainly focuses on Convolutional Neural Network (CNN), which cannot efficiently handle graph data that are popular in many applications. Graph Convolutional Network (GCN) has been proposed as one of the most promising techniques for graph learning, but its federated setting has been seldom explored. In this paper, we propose FedGraph for federated graph learning among multiple computing clients, each of which holds a subgraph. FedGraph provides strong graph learning capability across clients by addressing two unique challenges. First, traditional GCN training needs feature data sharing among clients, leading to risk of privacy leakage. FedGraph solves this issue using a novel cross-client convolution operation. The second challenge is high GCN training overhead incurred by large graph size. We propose an intelligent graph sampling algorithm based on deep reinforcement learning, which can automatically converge to the optimal sampling policies that balance training speed and accuracy. We implement FedGraph based on PyTorch and deploy it on a testbed for performance evaluation. The experimental results of four popular datasets demonstrate that FedGraph significantly outperforms existing work by enabling faster convergence to higher accuracy.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.