Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hybrid FedGraph: An efficient hybrid federated learning algorithm using graph convolutional neural network (2404.09443v1)

Published 15 Apr 2024 in cs.LG and cs.DC

Abstract: Federated learning is an emerging paradigm for decentralized training of machine learning models on distributed clients, without revealing the data to the central server. Most existing works have focused on horizontal or vertical data distributions, where each client possesses different samples with shared features, or each client fully shares only sample indices, respectively. However, the hybrid scheme is much less studied, even though it is much more common in the real world. Therefore, in this paper, we propose a generalized algorithm, FedGraph, that introduces a graph convolutional neural network to capture feature-sharing information while learning features from a subset of clients. We also develop a simple but effective clustering algorithm that aggregates features produced by the deep neural networks of each client while preserving data privacy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: