Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimisation of MCTS Player for The Lord of the Rings: The Card Game (2109.12001v1)

Published 24 Sep 2021 in cs.LG

Abstract: The article presents research on the use of Monte-Carlo Tree Search (MCTS) methods to create an artificial player for the popular card game "The Lord of the Rings". The game is characterized by complicated rules, multi-stage round construction, and a high level of randomness. The described study found that the best probability of a win is received for a strategy combining expert knowledge-based agents with MCTS agents at different decision stages. It is also beneficial to replace random playouts with playouts using expert knowledge. The results of the final experiments indicate that the relative effectiveness of the developed solution grows as the difficulty of the game increases.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.