Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms (1808.04794v1)

Published 14 Aug 2018 in cs.AI and cs.LG

Abstract: We investigate the impact of supervised prediction models on the strength and efficiency of artificial agents that use the Monte-Carlo Tree Search (MCTS) algorithm to play a popular video game Hearthstone: Heroes of Warcraft. We overview our custom implementation of the MCTS that is well-suited for games with partially hidden information and random effects. We also describe experiments which we designed to quantify the performance of our Hearthstone agent's decision making. We show that even simple neural networks can be trained and successfully used for the evaluation of game states. Moreover, we demonstrate that by providing a guidance to the game state search heuristic, it is possible to substantially improve the win rate, and at the same time reduce the required computations.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube