Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unlocking Compositional Generalization in Pre-trained Models Using Intermediate Representations (2104.07478v1)

Published 15 Apr 2021 in cs.CL

Abstract: Sequence-to-sequence (seq2seq) models are prevalent in semantic parsing, but have been found to struggle at out-of-distribution compositional generalization. While specialized model architectures and pre-training of seq2seq models have been proposed to address this issue, the former often comes at the cost of generality and the latter only shows limited success. In this paper, we study the impact of intermediate representations on compositional generalization in pre-trained seq2seq models, without changing the model architecture at all, and identify key aspects for designing effective representations. Instead of training to directly map natural language to an executable form, we map to a reversible or lossy intermediate representation that has stronger structural correspondence with natural language. The combination of our proposed intermediate representations and pre-trained models is surprisingly effective, where the best combinations obtain a new state-of-the-art on CFQ (+14.8 accuracy points) and on the template-splits of three text-to-SQL datasets (+15.0 to +19.4 accuracy points). This work highlights that intermediate representations provide an important and potentially overlooked degree of freedom for improving the compositional generalization abilities of pre-trained seq2seq models.

Citations (65)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com