Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Iterative Decoding for Compositional Generalization in Transformers (2110.04169v2)

Published 8 Oct 2021 in cs.LG and cs.CL

Abstract: Deep learning models generalize well to in-distribution data but struggle to generalize compositionally, i.e., to combine a set of learned primitives to solve more complex tasks. In sequence-to-sequence (seq2seq) learning, transformers are often unable to predict correct outputs for longer examples than those seen at training. This paper introduces iterative decoding, an alternative to seq2seq that (i) improves transformer compositional generalization in the PCFG and Cartesian product datasets and (ii) evidences that, in these datasets, seq2seq transformers do not learn iterations that are not unrolled. In iterative decoding, training examples are broken down into a sequence of intermediate steps that the transformer learns iteratively. At inference time, the intermediate outputs are fed back to the transformer as intermediate inputs until an end-of-iteration token is predicted. We conclude by illustrating some limitations of iterative decoding in the CFQ dataset.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.