Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Self-Supervised Depth and Ego-Motion Estimation for Monocular Thermal Video Using Multi-Spectral Consistency Loss (2103.00760v3)

Published 1 Mar 2021 in cs.CV and cs.RO

Abstract: A thermal camera can robustly capture thermal radiation images under harsh light conditions such as night scenes, tunnels, and disaster scenarios. However, despite this advantage, neither depth nor ego-motion estimation research for the thermal camera have not been actively explored so far. In this paper, we propose a self-supervised learning method for depth and ego-motion estimation from thermal images. The proposed method exploits multi-spectral consistency that consists of temperature and photometric consistency loss. The temperature consistency loss provides a fundamental self-supervisory signal by reconstructing clipped and colorized thermal images. Additionally, we design a differentiable forward warping module that can transform the coordinate system of the estimated depth map and relative pose from thermal camera to visible camera. Based on the proposed module, the photometric consistency loss can provide complementary self-supervision to networks. Networks trained with the proposed method robustly estimate the depth and pose from monocular thermal video under low-light and even zero-light conditions. To the best of our knowledge, this is the first work to simultaneously estimate both depth and ego-motion from monocular thermal video in a self-supervised manner.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube