Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WS-SfMLearner: Self-supervised Monocular Depth and Ego-motion Estimation on Surgical Videos with Unknown Camera Parameters (2308.11776v2)

Published 22 Aug 2023 in cs.CV, cs.AI, and eess.IV

Abstract: Depth estimation in surgical video plays a crucial role in many image-guided surgery procedures. However, it is difficult and time consuming to create depth map ground truth datasets in surgical videos due in part to inconsistent brightness and noise in the surgical scene. Therefore, building an accurate and robust self-supervised depth and camera ego-motion estimation system is gaining more attention from the computer vision community. Although several self-supervision methods alleviate the need for ground truth depth maps and poses, they still need known camera intrinsic parameters, which are often missing or not recorded. Moreover, the camera intrinsic prediction methods in existing works depend heavily on the quality of datasets. In this work, we aimed to build a self-supervised depth and ego-motion estimation system which can predict not only accurate depth maps and camera pose, but also camera intrinsic parameters. We proposed a cost-volume-based supervision manner to give the system auxiliary supervision for camera parameters prediction. The experimental results showed that the proposed method improved the accuracy of estimated camera parameters, ego-motion, and depth estimation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.