Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Real-time Monaural Speech Enhancement With Short-time Discrete Cosine Transform (2102.04629v1)

Published 9 Feb 2021 in eess.AS and cs.SD

Abstract: Speech enhancement algorithms based on deep learning have been improved in terms of speech intelligibility and perceptual quality greatly. Many methods focus on enhancing the amplitude spectrum while reconstructing speech using the mixture phase. Since the clean phase is very important and difficult to predict, the performance of these methods will be limited. Some researchers attempted to estimate the phase spectrum directly or indirectly, but the effect is not ideal. Recently, some studies proposed the complex-valued model and achieved state-of-the-art performance, such as deep complex convolution recurrent network (DCCRN). However, the computation of the model is huge. To reduce the complexity and further improve the performance, we propose a novel method using discrete cosine transform as the input in this paper, called deep cosine transform convolutional recurrent network (DCTCRN). Experimental results show that DCTCRN achieves state-of-the-art performance both on objective and subjective metrics. Compared with noisy mixtures, the mean opinion score (MOS) increased by 0.46 (2.86 to 3.32) absolute processed by the proposed model with only 2.86M parameters.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.