Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

End-to-end speech enhancement based on discrete cosine transform (1910.07840v4)

Published 17 Oct 2019 in cs.SD and eess.AS

Abstract: Previous speech enhancement methods focus on estimating the short-time spectrum of speech signals due to its short-term stability. However, these methods often only estimate the clean magnitude spectrum and reuse the noisy phase when resynthesize speech signals, which is unlikely a valid short-time Fourier transform (STFT). Recently, DNN based speech enhancement methods mainly joint estimation of the magnitude and phase spectrum. These methods usually give better performance than magnitude spectrum estimation but need much larger computation and memory overhead. In this paper, we propose using the Discrete Cosine Transform (DCT) to reconstruct a valid short-time spectrum. Under the U-net structure, we enhance the real spectrogram and finally achieve perfect performance.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)