Papers
Topics
Authors
Recent
2000 character limit reached

Surrogate Source Model Learning for Determined Source Separation (2011.05540v1)

Published 11 Nov 2020 in eess.AS, cs.SD, and eess.SP

Abstract: We propose to learn surrogate functions of universal speech priors for determined blind speech separation. Deep speech priors are highly desirable due to their high modelling power, but are not compatible with state-of-the-art independent vector analysis based on majorization-minimization (AuxIVA), since deriving the required surrogate function is not easy, nor always possible. Instead, we do away with exact majorization and directly approximate the surrogate. Taking advantage of iterative source steering (ISS) updates, we back propagate the permutation invariant separation loss through multiple iterations of AuxIVA. ISS lends itself well to this task due to its lower complexity and lack of matrix inversion. Experiments show large improvements in terms of scale invariant signal-to-distortion (SDR) ratio and word error rate compared to baseline methods. Training is done on two speakers mixtures and we experiment with two losses, SDR and coherence. We find that the learnt approximate surrogate generalizes well on mixtures of three and four speakers without any modification. We also demonstrate generalization to a different variation of the AuxIVA update equations. The SDR loss leads to fastest convergence in iterations, while coherence leads to the lowest word error rate (WER). We obtain as much as 36 % reduction in WER.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.