Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Accelerating Auxiliary Function-based Independent Vector Analysis (2009.09402v1)

Published 20 Sep 2020 in eess.AS

Abstract: Independent Vector Analysis (IVA) is an effective approach for Blind Source Separation (BSS) of convolutive mixtures of audio signals. As a practical realization of an IVA-based BSS algorithm, the so-called AuxIVA update rules based on the Majorize-Minimize (MM) principle have been proposed which allow for fast and computationally efficient optimization of the IVA cost function. For many real-time applications, however, update rules for IVA exhibiting even faster convergence are highly desirable. To this end, we investigate techniques which accelerate the convergence of the AuxIVA update rules without extra computational cost. The efficacy of the proposed methods is verified in experiments representing real-world acoustic scenarios.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.