Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Investigating Catastrophic Forgetting During Continual Training for Neural Machine Translation (2011.00678v3)

Published 2 Nov 2020 in cs.CL and cs.AI

Abstract: Neural machine translation (NMT) models usually suffer from catastrophic forgetting during continual training where the models tend to gradually forget previously learned knowledge and swing to fit the newly added data which may have a different distribution, e.g. a different domain. Although many methods have been proposed to solve this problem, we cannot get to know what causes this phenomenon yet. Under the background of domain adaptation, we investigate the cause of catastrophic forgetting from the perspectives of modules and parameters (neurons). The investigation on the modules of the NMT model shows that some modules have tight relation with the general-domain knowledge while some other modules are more essential in the domain adaptation. And the investigation on the parameters shows that some parameters are important for both the general-domain and in-domain translation and the great change of them during continual training brings about the performance decline in general-domain. We conduct experiments across different language pairs and domains to ensure the validity and reliability of our findings.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.