Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Pruning-then-Expanding Model for Domain Adaptation of Neural Machine Translation (2103.13678v2)

Published 25 Mar 2021 in cs.CL

Abstract: Domain Adaptation is widely used in practical applications of neural machine translation, which aims to achieve good performance on both the general-domain and in-domain. However, the existing methods for domain adaptation usually suffer from catastrophic forgetting, domain divergence, and model explosion. To address these three problems, we propose a method of "divide and conquer" which is based on the importance of neurons or parameters in the translation model. In our method, we first prune the model and only keep the important neurons or parameters, making them responsible for both general-domain and in-domain translation. Then we further train the pruned model supervised by the original unpruned model with the knowledge distillation method. Last we expand the model to the original size and fine-tune the added parameters for the in-domain translation. We conduct experiments on different languages and domains and the results show that our method can achieve significant improvements compared with several strong baselines.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.