Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Linear Parameter-Varying Subspace Identification: A Unified Framework (2008.03347v1)

Published 7 Aug 2020 in eess.SY and cs.SY

Abstract: In this paper, we establish a unified framework for subspace identification (SID) of linear parameter-varying (LPV) systems to estimate LPV state-space (SS) models in innovation form. This framework enables us to derive novel LPV SID schemes that are extensions of existing linear time-invariant (LTI) methods. More specifically, we derive the open-loop, closed-loop, and predictor-based data-equations, an input-output surrogate form of the SS representation, by systematically establishing an LPV subspace identification theory. We show the additional challenges of the LPV setting compared to the LTI case. Based on the data-equations, several methods are proposed to estimate LPV-SS models based on a maximum-likelihood or a realization based argument. Furthermore, the established theoretical framework for the LPV subspace identification problem allows us to lower the number of to-be-estimated parameters and to overcome dimensionality problems of the involved matrices, leading to a decrease in the computational complexity of LPV SIDs in general. To the authors' knowledge, this paper is the first in-depth examination of the LPV subspace identification problem. The effectiveness of the proposed subspace identification methods are demonstrated and compared with existing methods in a Monte Carlo study of identifying a benchmark MIMO LPV system.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.