Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Alternative Form of Predictor Based Identification of LPV-SS Models with Innovation Noise (1609.07536v1)

Published 23 Sep 2016 in cs.SY

Abstract: In this paper, we present an approach to identify linear parameter-varying (LPV) systems with a state-space (SS) model structure in an innovation form where the coefficient functions have static and affine dependency on the scheduling signal. With this scheme, the curse of dimensionality problem is reduced, compared to existing predictor based LPV subspace identification schemes. The investigated LPV-SS model is reformulated into an equivalent impulse response form, which turns out to be a moving average with exogenous inputs (MAX) system. The Markov coefficient functions of the LPV-MAX representation are multi-linear in the scheduling signal and its time-shifts, contrary to the predictor based schemes where the corresponding LPV auto-regressive with exogenous inputs system is multi-quadratic in the scheduling signal and its time-shifts. In this paper, we will prove that under certain conditions on the input and scheduling signals, the $\ell_2$ loss function of the one-step-ahead prediction error for the LPV-MAX model has only one unique minimum, corresponding to the original underlying system. Hence, identifying the LPV-MAX model in the prediction error minimization framework will be consistent and unbiased. The LPV-SS model is realized by applying an efficient basis reduced Ho-Kalman realization on the identified LPV-MAX model. The performance of the proposed scheme is assessed on a Monte Carlo simulation study.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.