Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalizing Tensor Decomposition for N-ary Relational Knowledge Bases (2007.03988v1)

Published 8 Jul 2020 in cs.CL

Abstract: With the rapid development of knowledge bases (KBs), link prediction task, which completes KBs with missing facts, has been broadly studied in especially binary relational KBs (a.k.a knowledge graph) with powerful tensor decomposition related methods. However, the ubiquitous n-ary relational KBs with higher-arity relational facts are paid less attention, in which existing translation based and neural network based approaches have weak expressiveness and high complexity in modeling various relations. Tensor decomposition has not been considered for n-ary relational KBs, while directly extending tensor decomposition related methods of binary relational KBs to the n-ary case does not yield satisfactory results due to exponential model complexity and their strong assumptions on binary relations. To generalize tensor decomposition for n-ary relational KBs, in this work, we propose GETD, a generalized model based on Tucker decomposition and Tensor Ring decomposition. The existing negative sampling technique is also generalized to the n-ary case for GETD. In addition, we theoretically prove that GETD is fully expressive to completely represent any KBs. Extensive evaluations on two representative n-ary relational KB datasets demonstrate the superior performance of GETD, significantly improving the state-of-the-art methods by over 15\%. Moreover, GETD further obtains the state-of-the-art results on the benchmark binary relational KB datasets.

Citations (64)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.