Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Searching to Sparsify Tensor Decomposition for N-ary Relational Data (2104.10625v1)

Published 21 Apr 2021 in cs.LG

Abstract: Tensor, an extension of the vector and matrix to the multi-dimensional case, is a natural way to describe the N-ary relational data. Recently, tensor decomposition methods have been introduced into N-ary relational data and become state-of-the-art on embedding learning. However, the performance of existing tensor decomposition methods is not as good as desired. First, they suffer from the data-sparsity issue since they can only learn from the N-ary relational data with a specific arity, i.e., parts of common N-ary relational data. Besides, they are neither effective nor efficient enough to be trained due to the over-parameterization problem. In this paper, we propose a novel method, i.e., S2S, for effectively and efficiently learning from the N-ary relational data. Specifically, we propose a new tensor decomposition framework, which allows embedding sharing to learn from facts with mixed arity. Since the core tensors may still suffer from the over-parameterization, we propose to reduce parameters by sparsifying the core tensors while retaining their expressive power using neural architecture search (NAS) techniques, which can search for data-dependent architectures. As a result, the proposed S2S not only guarantees to be expressive but also efficiently learns from mixed arity. Finally, empirical results have demonstrated that S2S is efficient to train and achieves state-of-the-art performance.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.