Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tail-adaptive Bayesian shrinkage (2007.02192v5)

Published 4 Jul 2020 in math.ST, stat.AP, stat.CO, stat.ME, stat.ML, and stat.TH

Abstract: Robust Bayesian methods for high-dimensional regression problems under diverse sparse regimes are studied. Traditional shrinkage priors are primarily designed to detect a handful of signals from tens of thousands of predictors in the so-called ultra-sparsity domain. However, they may not perform desirably when the degree of sparsity is moderate. In this paper, we propose a robust sparse estimation method under diverse sparsity regimes, which has a tail-adaptive shrinkage property. In this property, the tail-heaviness of the prior adjusts adaptively, becoming larger or smaller as the sparsity level increases or decreases, respectively, to accommodate more or fewer signals, a posteriori. We propose a global-local-tail (GLT) Gaussian mixture distribution that ensures this property. We examine the role of the tail-index of the prior in relation to the underlying sparsity level and demonstrate that the GLT posterior contracts at the minimax optimal rate for sparse normal mean models. We apply both the GLT prior and the Horseshoe prior to a real data problem and simulation examples. Our findings indicate that the varying tail rule based on the GLT prior offers advantages over a fixed tail rule based on the Horseshoe prior in diverse sparsity regimes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: