Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra (2305.15754v3)

Published 25 May 2023 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: In high-dimensional Bayesian statistics, various methods have been developed, including prior distributions that induce parameter sparsity to handle many parameters. Yet, these approaches often overlook the rich spectral structure of the covariate matrix, which can be crucial when true signals are not sparse. To address this gap, we introduce a data-adaptive Gaussian prior whose covariance is aligned with the leading eigenvectors of the sample covariance. This prior design targets the data's intrinsic complexity rather than its ambient dimension by concentrating the parameter search along principal data directions. We establish contraction rates of the corresponding posterior distribution, which reveal how the mass in the spectrum affects the prediction error bounds. Furthermore, we derive a truncated Gaussian approximation to the posterior (i.e., a Bernstein-von Mises-type result), which allows for uncertainty quantification with a reduced computational burden. Our findings demonstrate that Bayesian methods leveraging spectral information of the data are effective for estimation in non-sparse, high-dimensional settings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: