Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deep State Space Models for Nonlinear System Identification (2003.14162v3)

Published 31 Mar 2020 in eess.SY, cs.LG, cs.SY, and stat.ML

Abstract: Deep state space models (SSMs) are an actively researched model class for temporal models developed in the deep learning community which have a close connection to classic SSMs. The use of deep SSMs as a black-box identification model can describe a wide range of dynamics due to the flexibility of deep neural networks. Additionally, the probabilistic nature of the model class allows the uncertainty of the system to be modelled. In this work a deep SSM class and its parameter learning algorithm are explained in an effort to extend the toolbox of nonlinear identification methods with a deep learning based method. Six recent deep SSMs are evaluated in a first unified implementation on nonlinear system identification benchmarks.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.