Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Characterizing the Predictive Accuracy of Dynamic Mode Decomposition for Data-Driven Control (2003.01028v2)

Published 2 Mar 2020 in eess.SY, cs.SY, and math.OC

Abstract: Dynamic mode decomposition (DMD) is a versatile approach that enables the construction of low-order models from data. Controller design tasks based on such models require estimates and guarantees on predictive accuracy. In this work, we provide a theoretical analysis of DMD model errors that reveals impact of model order and data availability. The analysis also establishes conditions under which DMD models can be made asymptotically exact. We verify our results using a 2D diffusion system.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.