Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Extended Dynamic Mode Decomposition for Inhomogeneous Problems (2004.06205v1)

Published 13 Apr 2020 in math.NA and cs.NA

Abstract: Dynamic mode decomposition (DMD) is a powerful data-driven technique for construction of reduced-order models of complex dynamical systems. Multiple numerical tests have demonstrated the accuracy and efficiency of DMD, but mostly for systems described by partial differential equations (PDEs) with homogeneous boundary conditions. We propose an extended dynamic mode decomposition (xDMD) approach to cope with the potential unknown sources/sinks in PDEs. Motivated by similar ideas in deep neural networks, we equipped our xDMD with two new features. First, it has a bias term, which accounts for inhomogeneity of PDEs and/or boundary conditions. Second, instead of learning a flow map, xDMD learns the residual increment by subtracting the identity operator. Our theoretical error analysis demonstrates the improved accuracy of xDMD relative to standard DMD. Several numerical examples are presented to illustrate this result.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.