Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Learning for Massive MIMO Channel State Acquisition and Feedback (2002.06945v3)

Published 17 Feb 2020 in cs.IT, cs.LG, eess.SP, math.IT, and stat.ML

Abstract: Massive multiple-input multiple-output (MIMO) systems are a main enabler of the excessive throughput requirements in 5G and future generation wireless networks as they can serve many users simultaneously with high spectral and energy efficiency. To achieve this, massive MIMO systems require accurate and timely channel state information (CSI), which is acquired by a training process that involves pilot transmission, CSI estimation and feedback. This training process incurs a training overhead, which scales with the number of antennas, users and subcarriers. Reducing this training overhead in massive MIMO systems has been a major topic of research since the emergence of the concept. Recently, deep learning (DL)-based approaches for massive MIMO training have been proposed and showed significant improvements compared to traditional techniques. This paper provides an overview of how neural networks (NNs) can be used in the training process of massive MIMO systems to improve the performance by reducing the CSI acquisition overhead and to reduce complexity.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube