Papers
Topics
Authors
Recent
Search
2000 character limit reached

Joint Channel Training and Feedback for FDD Massive MIMO Systems

Published 10 Dec 2015 in cs.IT and math.IT | (1512.03230v1)

Abstract: Massive multiple-input multiple-output (MIMO) is widely recognized as a promising technology for future 5G wireless communication systems. To achieve the theoretical performance gains in massive MIMO systems, accurate channel state information at the transmitter (CSIT) is crucial. Due to the overwhelming pilot signaling and channel feedback overhead, however, conventional downlink channel estimation and uplink channel feedback schemes might not be suitable for frequency-division duplexing (FDD) massive MIMO systems. In addition, these two topics are usually separately considered in the literature. In this paper, we propose a joint channel training and feedback scheme for FDD massive MIMO systems. Specifically, we firstly exploit the temporal correlation of time-varying channels to propose a differential channel training and feedback scheme, which simultaneously reduces the overhead for downlink training and uplink feedback. We next propose a structured compressive sampling matching pursuit (S-CoSaMP) algorithm to acquire a reliable CSIT by exploiting the structured sparsity of wireless MIMO channels. Simulation results demonstrate that the proposed scheme can achieve substantial reduction in the training and feedback overhead.

Citations (67)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.