Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pose estimation and bin picking for deformable products (1911.05185v1)

Published 12 Nov 2019 in cs.RO and cs.CV

Abstract: Robotic systems in manufacturing applications commonly assume known object geometry and appearance. This simplifies the task for the 3D perception algorithms and allows the manipulation to be more deterministic. However, those approaches are not easily transferable to the agricultural and food domains due to the variability and deformability of natural food. We demonstrate an approach applied to poultry products that allows picking up a whole chicken from an unordered bin using a suction cup gripper, estimating its pose using a Deep Learning approach, and placing it in a canonical orientation where it can be further processed. Our robotic system was experimentally evaluated and is able to generalize to object variations and achieves high accuracy on bin picking and pose estimation tasks in a real-world environment.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.