Papers
Topics
Authors
Recent
Search
2000 character limit reached

Speaker Verification in Emotional Talking Environments based on Third-Order Circular Suprasegmental Hidden Markov Model

Published 29 Sep 2019 in cs.SD and eess.AS | (1909.13244v2)

Abstract: Speaker verification accuracy in emotional talking environments is not high as it is in neutral ones. This work aims at accepting or rejecting the claimed speaker using his/her voice in emotional environments based on the Third-Order Circular Suprasegmental Hidden Markov Model (CSPHMM3) as a classifier. An Emirati-accented (Arabic) speech database with Mel-Frequency Cepstral Coefficients as the extracted features has been used to evaluate our work. Our results demonstrate that speaker verification accuracy based on CSPHMM3 is greater than that based on the state-of-the-art classifiers and models such as Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and Vector Quantization (VQ).

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.