Papers
Topics
Authors
Recent
2000 character limit reached

Emotion Recognition based on Third-Order Circular Suprasegmental Hidden Markov Model

Published 23 Mar 2019 in cs.SD, cs.HC, and eess.AS | (1903.09803v1)

Abstract: This work focuses on recognizing the unknown emotion based on the Third-Order Circular Suprasegmental Hidden Markov Model (CSPHMM3) as a classifier. Our work has been tested on Emotional Prosody Speech and Transcripts (EPST) database. The extracted features of EPST database are Mel-Frequency Cepstral Coefficients (MFCCs). Our results give average emotion recognition accuracy of 77.8% based on the CSPHMM3. The results of this work demonstrate that CSPHMM3 is superior to the Third-Order Hidden Markov Model (HMM3), Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and Vector Quantization (VQ) by 6.0%, 4.9%, 3.5%, and 5.4%, respectively, for emotion recognition. The average emotion recognition accuracy achieved based on the CSPHMM3 is comparable to that found using subjective assessment by human judges.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.