Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Emotion Recognition based on Third-Order Circular Suprasegmental Hidden Markov Model (1903.09803v1)

Published 23 Mar 2019 in cs.SD, cs.HC, and eess.AS

Abstract: This work focuses on recognizing the unknown emotion based on the Third-Order Circular Suprasegmental Hidden Markov Model (CSPHMM3) as a classifier. Our work has been tested on Emotional Prosody Speech and Transcripts (EPST) database. The extracted features of EPST database are Mel-Frequency Cepstral Coefficients (MFCCs). Our results give average emotion recognition accuracy of 77.8% based on the CSPHMM3. The results of this work demonstrate that CSPHMM3 is superior to the Third-Order Hidden Markov Model (HMM3), Gaussian Mixture Model (GMM), Support Vector Machine (SVM), and Vector Quantization (VQ) by 6.0%, 4.9%, 3.5%, and 5.4%, respectively, for emotion recognition. The average emotion recognition accuracy achieved based on the CSPHMM3 is comparable to that found using subjective assessment by human judges.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.