Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Processing Columnar Collider Data with GPU-Accelerated Kernels (1906.06242v2)

Published 14 Jun 2019 in physics.data-an, cs.DC, and physics.comp-ph

Abstract: At high energy physics experiments, processing billions of records of structured numerical data from collider events to a few statistical summaries is a common task. The data processing is typically more complex than standard query languages allow, such that custom numerical codes are used. At present, these codes mostly operate on individual event records and are parallelized in multi-step data reduction workflows using batch jobs across CPU farms. Based on a simplified top quark pair analysis with CMS Open Data, we demonstrate that it is possible to carry out significant parts of a collider analysis at a rate of around a million events per second on a single multicore server with optional GPU acceleration. This is achieved by representing HEP event data as memory-mappable sparse arrays of columns, and by expressing common analysis operations as kernels that can be used to process the event data in parallel. We find that only a small number of relatively simple functional kernels are needed for a generic HEP analysis. The approach based on columnar processing of data could speed up and simplify the cycle for delivering physics results at HEP experiments. We release the \texttt{hepaccelerate} prototype library as a demonstrator of such methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.