Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Toward real-time data query systems in HEP (1711.01229v2)

Published 3 Nov 2017 in cs.DC

Abstract: Exploratory data analysis tools must respond quickly to a user's questions, so that the answer to one question (e.g. a visualized histogram or fit) can influence the next. In some SQL-based query systems used in industry, even very large (petabyte) datasets can be summarized on a human timescale (seconds), employing techniques such as columnar data representation, caching, indexing, and code generation/JIT-compilation. This article describes progress toward realizing such a system for High Energy Physics (HEP), focusing on the intermediate problems of optimizing data access and calculations for "query sized" payloads, such as a single histogram or group of histograms, rather than large reconstruction or data-skimming jobs. These techniques include direct extraction of ROOT TBranches into Numpy arrays and compilation of Python analysis functions (rather than SQL) to be executed very quickly. We will also discuss the problem of caching and actively delivering jobs to worker nodes that have the necessary input data preloaded in cache. All of these pieces of the larger solution are available as standalone GitHub repositories, and could be used in current analyses.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.