Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Road User Detection in Videos (1903.12049v1)

Published 28 Mar 2019 in cs.CV

Abstract: Successive frames of a video are highly redundant, and the most popular object detection methods do not take advantage of this fact. Using multiple consecutive frames can improve detection of small objects or difficult examples and can improve speed and detection consistency in a video sequence, for instance by interpolating features between frames. In this work, a novel approach is introduced to perform online video object detection using two consecutive frames of video sequences involving road users. Two new models, RetinaNet-Double and RetinaNet-Flow, are proposed, based respectively on the concatenation of a target frame with a preceding frame, and the concatenation of the optical flow with the target frame. The models are trained and evaluated on three public datasets. Experiments show that using a preceding frame improves performance over single frame detectors, but using explicit optical flow usually does not.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.