Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks (1607.04648v2)

Published 15 Jul 2016 in cs.CV

Abstract: Given the vast amounts of video available online, and recent breakthroughs in object detection with static images, object detection in video offers a promising new frontier. However, motion blur and compression artifacts cause substantial frame-level variability, even in videos that appear smooth to the eye. Additionally, video datasets tend to have sparsely annotated frames. We present a new framework for improving object detection in videos that captures temporal context and encourages consistency of predictions. First, we train a pseudo-labeler, that is, a domain-adapted convolutional neural network for object detection. The pseudo-labeler is first trained individually on the subset of labeled frames, and then subsequently applied to all frames. Then we train a recurrent neural network that takes as input sequences of pseudo-labeled frames and optimizes an objective that encourages both accuracy on the target frame and consistency across consecutive frames. The approach incorporates strong supervision of target frames, weak-supervision on context frames, and regularization via a smoothness penalty. Our approach achieves mean Average Precision (mAP) of 68.73, an improvement of 7.1 over the strongest image-based baselines for the Youtube-Video Objects dataset. Our experiments demonstrate that neighboring frames can provide valuable information, even absent labels.

Citations (61)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.