Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks (1607.04648v2)

Published 15 Jul 2016 in cs.CV

Abstract: Given the vast amounts of video available online, and recent breakthroughs in object detection with static images, object detection in video offers a promising new frontier. However, motion blur and compression artifacts cause substantial frame-level variability, even in videos that appear smooth to the eye. Additionally, video datasets tend to have sparsely annotated frames. We present a new framework for improving object detection in videos that captures temporal context and encourages consistency of predictions. First, we train a pseudo-labeler, that is, a domain-adapted convolutional neural network for object detection. The pseudo-labeler is first trained individually on the subset of labeled frames, and then subsequently applied to all frames. Then we train a recurrent neural network that takes as input sequences of pseudo-labeled frames and optimizes an objective that encourages both accuracy on the target frame and consistency across consecutive frames. The approach incorporates strong supervision of target frames, weak-supervision on context frames, and regularization via a smoothness penalty. Our approach achieves mean Average Precision (mAP) of 68.73, an improvement of 7.1 over the strongest image-based baselines for the Youtube-Video Objects dataset. Our experiments demonstrate that neighboring frames can provide valuable information, even absent labels.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.