Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving (1903.10654v3)

Published 26 Mar 2019 in cs.LG, cs.AI, and cs.RO

Abstract: We examine the problem of adversarial reinforcement learning for multi-agent domains including a rule-based agent. Rule-based algorithms are required in safety-critical applications for them to work properly in a wide range of situations. Hence, every effort is made to find failure scenarios during the development phase. However, as the software becomes complicated, finding failure cases becomes difficult. Especially in multi-agent domains, such as autonomous driving environments, it is much harder to find useful failure scenarios that help us improve the algorithm. We propose a method for efficiently finding failure scenarios; this method trains the adversarial agents using multi-agent reinforcement learning such that the tested rule-based agent fails. We demonstrate the effectiveness of our proposed method using a simple environment and autonomous driving simulator.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.