Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Evaluating the Robustness of Deep Reinforcement Learning for Autonomous Policies in a Multi-agent Urban Driving Environment (2112.11947v3)

Published 22 Dec 2021 in cs.AI, cs.LG, and cs.MA

Abstract: Deep reinforcement learning is actively used for training autonomous car policies in a simulated driving environment. Due to the large availability of various reinforcement learning algorithms and the lack of their systematic comparison across different driving scenarios, we are unsure of which ones are more effective for training autonomous car software in single-agent as well as multi-agent driving environments. A benchmarking framework for the comparison of deep reinforcement learning in a vision-based autonomous driving will open up the possibilities for training better autonomous car driving policies. To address these challenges, we provide an open and reusable benchmarking framework for systematic evaluation and comparative analysis of deep reinforcement learning algorithms for autonomous driving in a single- and multi-agent environment. Using the framework, we perform a comparative study of discrete and continuous action space deep reinforcement learning algorithms. We also propose a comprehensive multi-objective reward function designed for the evaluation of deep reinforcement learning-based autonomous driving agents. We run the experiments in a vision-only high-fidelity urban driving simulated environments. The results indicate that only some of the deep reinforcement learning algorithms perform consistently better across single and multi-agent scenarios when trained in various multi-agent-only environment settings. For example, A3C- and TD3-based autonomous cars perform comparatively better in terms of more robust actions and minimal driving errors in both single and multi-agent scenarios. We conclude that different deep reinforcement learning algorithms exhibit different driving and testing performance in different scenarios, which underlines the need for their systematic comparative analysis. The benchmarking framework proposed in this paper facilitates such a comparison.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube