Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Live Reconstruction of Large-Scale Dynamic Outdoor Worlds (1903.06708v2)

Published 15 Mar 2019 in cs.CV

Abstract: Standard 3D reconstruction pipelines assume stationary world, therefore suffer from ghost artifacts' whenever dynamic objects are present in the scene. Recent approaches has started tackling this issue, however, they typically either only discard dynamic information, represent it using bounding boxes or per-frame depth or rely on approaches that are inherently slow and not suitable to online settings. We propose an end-to-end system for live reconstruction of large-scale outdoor dynamic environments. We leverage recent advances in computationally efficient data-driven approaches for 6-DoF object pose estimation to segment the scene into objects and stationarybackground'. This allows us to represent the scene using a time-dependent (dynamic) map, in which each object is explicitly represented as a separate instance and reconstructed in its own volume. For each time step, our dynamic map maintains a relative pose of each volume with respect to the stationary background. Our system operates in incremental manner which is essential for on-line reconstruction, handles large-scale environments with objects at large distances and runs in (near) real-time. We demonstrate the efficacy of our approach on the KITTI dataset, and provide qualitative and quantitative results showing high-quality dense 3D reconstructions of a number of dynamic scenes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.