Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Live Reconstruction of Large-Scale Dynamic Outdoor Worlds (1903.06708v2)

Published 15 Mar 2019 in cs.CV

Abstract: Standard 3D reconstruction pipelines assume stationary world, therefore suffer from ghost artifacts' whenever dynamic objects are present in the scene. Recent approaches has started tackling this issue, however, they typically either only discard dynamic information, represent it using bounding boxes or per-frame depth or rely on approaches that are inherently slow and not suitable to online settings. We propose an end-to-end system for live reconstruction of large-scale outdoor dynamic environments. We leverage recent advances in computationally efficient data-driven approaches for 6-DoF object pose estimation to segment the scene into objects and stationarybackground'. This allows us to represent the scene using a time-dependent (dynamic) map, in which each object is explicitly represented as a separate instance and reconstructed in its own volume. For each time step, our dynamic map maintains a relative pose of each volume with respect to the stationary background. Our system operates in incremental manner which is essential for on-line reconstruction, handles large-scale environments with objects at large distances and runs in (near) real-time. We demonstrate the efficacy of our approach on the KITTI dataset, and provide qualitative and quantitative results showing high-quality dense 3D reconstructions of a number of dynamic scenes.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube