Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SMORE: Simultaneous Map and Object REconstruction (2406.13896v4)

Published 19 Jun 2024 in cs.CV

Abstract: We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR. Depth-based reconstructions tend to focus on small-scale objects or large-scale SLAM reconstructions that treat moving objects as outliers. We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background. To achieve this, we take inspiration from recent novel view synthesis methods and frame the reconstruction problem as a global optimization over neural surfaces, ego poses, and object poses, which minimizes the error between composed spacetime surfaces and input LiDAR scans. In contrast to view synthesis methods, which typically minimize 2D errors with gradient descent, we minimize a 3D point-to-surface error by coordinate descent, which we decompose into registration and surface reconstruction steps. Each step can be handled well by off-the-shelf methods without any re-training. We analyze the surface reconstruction step for rolling-shutter LiDARs, and show that deskewing operations common in continuous time SLAM can be applied to dynamic objects as well, improving results over prior art by an order of magnitude. Beyond pursuing dynamic reconstruction as a goal in and of itself, we propose that such a system can be used to auto-label partially annotated sequences and produce ground truth annotation for hard-to-label problems such as depth completion and scene flow. Please see https://anishmadan23.github.io/smore/ for more visual results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.