Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Stable Combinatorial Particle Swarm Optimization for Scalable Feature Selection in Gene Expression Data (1901.08619v1)

Published 24 Jan 2019 in cs.NE

Abstract: Evolutionary computation (EC) algorithms, such as discrete and multi-objective versions of particle swarm optimization (PSO), have been applied to solve the Feature selection (FS) problem, tackling the combinatorial explosion of search spaces that are peppered with local minima. Furthermore, high-dimensional FS problems such as finding a small set of biomarkers to make a diagnostic call add an additional challenge as such methods ability to pick out the most important features must remain unchanged in decision spaces of increasing dimensions and presence of irrelevant features. We developed a combinatorial PSO algorithm, called COMB-PSO, that scales up to high-dimensional gene expression data while still selecting the smallest subsets of genes that allow reliable classification of samples. In particular, COMB-PSO enhances the encoding, speed of convergence, control of divergence and diversity of the conventional PSO algorithm, balancing exploration and exploitation of the search space. Applying our approach on real gene expression data of different cancers, COMB-PSO finds gene sets of smallest size that allow a reliable classification of the underlying disease classes.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.