Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Extended Particle Swarm Optimization (EPSO) for Feature Selection of High Dimensional Biomedical Data (2008.03530v1)

Published 8 Aug 2020 in cs.NE and cs.LG

Abstract: This paper proposes a novel Extended Particle Swarm Optimization model (EPSO) that potentially enhances the search process of PSO for optimization problem. Evidently, gene expression profiles are significantly important measurement factor in molecular biology that is used in medical diagnosis of cancer types. The challenge to certain classification methodologies for gene expression profiles lies in the thousands of features recorded for each sample. A modified Wrapper feature selection model is applied with the aim of addressing the gene classification challenge by replacing its randomness approach with EPSO and PSO respectively. EPSO is initializing the random size of the population and dividing them into two groups in order to promote the exploration and reduce the probability of falling in stagnation. Experimentally, EPSO has required less processing time to select the optimal features (average of 62.14 sec) than PSO (average of 95.72 sec). Furthermore, EPSO accuracy has provided better classification results (start from 54% to 100%) than PSO (start from 52% to 96%).

Citations (24)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube