Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Ensemble of Learning Project Productivity in Software Effort Based on Use Case Points (1812.06459v1)

Published 16 Dec 2018 in cs.LG and cs.AI

Abstract: It is well recognized that the project productivity is a key driver in estimating software project effort from Use Case Point size metric at early software development stages. Although, there are few proposed models for predicting productivity, there is no consistent conclusion regarding which model is the superior. Therefore, instead of building a new productivity prediction model, this paper presents a new ensemble construction mechanism applied for software project productivity prediction. Ensemble is an effective technique when performance of base models is poor. We proposed a weighted mean method to aggregate predicted productivities based on average of errors produced by training model. The obtained results show that the using ensemble is a good alternative approach when accuracies of base models are not consistently accurate over different datasets, and when models behave diversely.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.