Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

On the Value of Project Productivity for Early Effort Estimation (2205.04986v1)

Published 10 May 2022 in cs.SE

Abstract: In general, estimating software effort using a Use Case Point (UCP) size requires the use of productivity as a second prediction factor. However, there are three drawbacks to this approach: (1) there is no clear procedure for predicting productivity in the early stages, (2) the use of fixed or limited productivity ratios does not allow research to reflect the realities of the software industry, and (3) productivity from historical data is often challenging. The new UCP datasets now available allow us to perform further empirical investigations of the productivity variable in order to estimate the UCP effort. Accordingly, four different prediction models based on productivity were used. The results showed that learning productivity from historical data is more efficient than using classical approaches that rely on default or limited productivity values. In addition, predicting productivity from historical environmental factors is not often accurate. From here we conclude that productivity is an effective factor for estimating the software effort based on the UCP in the presence and absence of previous historical data. Moreover, productivity measurement should be flexible and adjustable when historical data is available

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube