Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enumerating Graph Partitions Without Too Small Connected Components Using Zero-suppressed Binary and Ternary Decision Diagrams (1804.02160v1)

Published 6 Apr 2018 in cs.DS

Abstract: Partitioning a graph into balanced components is important for several applications. For multi-objective problems, it is useful not only to find one solution but also to enumerate all the solutions with good values of objectives. However, there are a vast number of graph partitions in a graph, and thus it is difficult to enumerate desired graph partitions efficiently. In this paper, an algorithm to enumerate all the graph partitions such that all the weights of the connected components are at least a specified value is proposed. To deal with a large search space, we use zero-suppressed binary decision diagrams (ZDDs) to represent sets of graph partitions and we design a new algorithm based on frontier-based search, which is a framework to directly construct a ZDD. Our algorithm utilizes not only ZDDs but also ternary decision diagrams (TDDs) and realizes an operation which seems difficult to be designed only by ZDDs. Experimental results show that the proposed algorithm runs up to tens of times faster than an existing state-of-the-art algorithm.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.