Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Distributed Balanced Partitioning via Linear Embedding (1512.02727v1)

Published 9 Dec 2015 in cs.DC

Abstract: Balanced partitioning is often a crucial first step in solving large-scale graph optimization problems, e.g., in some cases, a big graph can be chopped into pieces that fit on one machine to be processed independently before stitching the results together. In other cases, links between different parts may show up in the running time and/or network communications cost. We study a distributed balanced partitioning problem where the goal is to partition the vertices of a given graph into k pieces so as to minimize the total cut size. Our algorithm is composed of a few steps that are easily implementable in distributed computation frameworks. The algorithm first embeds nodes of the graph onto a line, and then processes nodes in a distributed manner guided by the linear embedding order. We examine various ways to find the first embedding, e.g., via a hierarchical clustering or Hilbert curves. Then we apply four different techniques including local swaps, minimum cuts on the boundaries of partitions, as well as contraction and dynamic programming. As our empirical study, we compare the above techniques with each other, and also to previous work in distributed graph algorithms, e.g., a label propagation method, FENNEL and Spinner. We report our results both on a private map graph and several public social networks, and show that our results beat previous distributed algorithms: e.g., compared to the label propagation algorithm, we report an improvement of 15-25% in the cut value. We also observe that our algorithms allow for scalable distributed implementation for any number of partitions. Finally, we apply our techniques for the Google Maps Driving Directions to minimize the number of multi-shard queries with the goal of saving in CPU usage. During live experiments, we observe an ~40% drop in the number of multi-shard queries when comparing our method with a standard geography-based method.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube