Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regularizing Deep Hashing Networks Using GAN Generated Fake Images (1803.09466v2)

Published 26 Mar 2018 in cs.CV

Abstract: Recently, deep-networks-based hashing (deep hashing) has become a leading approach for large-scale image retrieval. It aims to learn a compact bitwise representation for images via deep networks, so that similar images are mapped to nearby hash codes. Since a deep network model usually has a large number of parameters, it may probably be too complicated for the training data we have, leading to model over-fitting. To address this issue, in this paper, we propose a simple two-stage pipeline to learn deep hashing models, by regularizing the deep hashing networks using fake images. The first stage is to generate fake images from the original training set without extra data, via a generative adversarial network (GAN). In the second stage, we propose a deep architec- ture to learn hash functions, in which we use a maximum-entropy based loss to incorporate the newly created fake images by the GAN. We show that this loss acts as a strong regularizer of the deep architecture, by penalizing low-entropy output hash codes. This loss can also be interpreted as a model ensemble by simultaneously training many network models with massive weight sharing but over different training sets. Empirical evaluation results on several benchmark datasets show that the proposed method has superior performance gains over state-of-the-art hashing methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.